翻訳と辞書 |
Nevanlinna's criterion : ウィキペディア英語版 | Nevanlinna's criterion In mathematics, Nevanlinna's criterion in complex analysis, proved in 1920 by the Finnish mathematician Rolf Nevanlinna, characterizes holomorphic univalent functions on the unit disk which are starlike. Nevanlinna used this criterion to prove the Bieberbach conjecture for starlike univalent functions ==Statement of criterion== A univalent function ''h'' on the unit disk satisfying ''h''(0) = 0 and ''h(0) = 1 is starlike, i.e. has image invariant under multilpication by real numbers in (), if and only if has positive real part for |''z''| < 1 and takes the value 1 at 0. Note that, by applying the result to ''a''•''h''(''rz''), the criterion applies on any disc |''z''| < r with only the requirement that ''f''(0) = 0 and ''f(0) ≠ 0.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Nevanlinna's criterion」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|